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INFLUENCE OF DIFFUSELY SPECULAR REFLECTION 

ON THE TRANSFER PROCESS IN A GAP 

G. I. Vorob'eva UDC 533.6.011.8 

A quasidiffusion approximation is constructed for the problem of radiation 
transfer in a narrow gap in the case of diffusely specular reflection by the 
walls. The accuracy of the approximation obtained is investigated. 

The quasidiffusion approximation proposed by Smoluchowski [I] is used extensively in 
studying the radiant or free-molecule transfer in long channels. It is shown in [2, 3] that 
this method can be extended to the transfer problem in the narrow gap between parallel plates. 
The assumption about the diffuse nature of the radiation played a substantial part in these 
papers. However, there is a significant quantity of experimental data indicating that the 
reflexivity of many materials has a substantial specular component: 0 = ps + 0d. As is 
shown in [4], the problem of determining the effective fluxes reduces in this case to the 
numerical solution of an integral equation. An assumption about the smallness of the gap is 
made in this paper that affords a possibility of constructing a quasidiffusion approximation 
that allows of analytical solution in a number of cases. 

I. PLANE-PARALLEL GAP 

Let us consider a domain V, the gap between two plane-parallel walls, each of which oc- 
cupies a domain S bounded by a contour L in a plane. A diffuse flux of density Q, homogene- 
ous along the height of the gap and dependent only on the location of the point on the con- 

Fig. i. Diagram of the domain under con- 
sideration. 
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tour L is incident on the side surface of the gap from outside (Fig. i). Part of the flux 
reflected from the i-th wall at the point y is diffuse, and will be denoted by qdi(y) (i = 
~ 2, y6Si). For simplicity we assume no absorption on the walls, i.e., 0 = i, then 0si + 

i = l. 

The function ~i = qdi + q'i, where q*i is the intrinsic radiation flux density of the 
i-th wall. The method described in [4] results in a system of two linear integral equations 
in Qi(Y) (i = I, 2) for the domain under consideration: 

o 

q e ( Y ) = q F ( y )  + p a  ( ~ ; ~  , ) , ~(y ' )K~(y ,  y )dSy, + B, (y) (1)  
1~1 "S 

where 

Kis(y, y') = h'-' 2 (p~ p~ )~ M~'i (y' y'); 
k=fl 

p; (2k -{- 2)-" (2k + 1) "~ 
[h 2 (2k + 2) ~' + I Y - -  Y' I-'1-" [h a (2k -1- 1) ~ + I Y - -  Y' [~1~ 

M~j (y, y') - 

(2k + l) ~ P'~ (2k + 2) ~ 
[U (2k + 1)" q- I Y -- Y' 1~] ~ [h ~ (2k + 2) ~ q- I Y -- Y'I ~1~ 

1 . , _ y , ) [  1 
/ 3 ~ ( v ) = ~ )  Q ( y ) ( n y . ,  y 

r y' 
L Y 

- -  (9~92)": h ~ ( 2 k + l ) ~ + ( y _ _ y , ) ~  - , U ( 2 k + 2 ) ~ + l y _ y , l ~  dLy,. 
h=O 

In the particular case od~ = 0d~ = 0 d, the system of integral equations decomposed into two 
independent equations after the insertion of the substitutions u = ~ + ~2, v = -~I + ~a, 
u* = q*~ + q*=, v* = -q** + q*2: 

u = u* + 9d [5i u (y') K~, (y, y') dSy, -- Li Q (Y') Ko (y, y') dLy, ], 

v = v* --- 0 d ,i v (y') K~ (y, y') dSy,  ; 

h-" ~ ,  (--i)~(f?(k+ i) ~ K,,--  h'- N~ (O ~ ) ~ ( k + - l )  ~ " g , = ~  �9 
,~'~o [h 2 (k + i) =' + l Y - -  Y' l'] 2 ' ~ ~-~.o= [h2(k + 1)"Tiy--y" ' . . . . . . . .  [J ~ 

(Fly,, y - -  y") I l ," od <-~I (~)S) k \) 
" / Y - - Y l  ~ ~ [U(k  '~-1) ~ + [ y - y ' l ~ ]  e " 

K0 

(2) 

(3) 

Let us define a two-dimensional component of the spherical radiation vector in the 
plane of the gap, a vector E averaged over the height of the gap: 

J i u ( y ' ) ( y  .... Y~) ~ o  E (y) = 2~h- 
r 1 (~)T-: | 
[h~k ~ + ] y - -  y'l 2 

] [ - - h ~ ( k  + I ) ~ + I Y - - Y ' [  ~ d S y , +  1 t Q(Y)(nY" Y - - Y ' ) ( Y - Y ' )  .,-z 
-~ k I y - -  y'l 3 2 

- arctg [y Y'[ ( k -  t) arctg (k -F- 1)h kh (le - I) h j h - -  - -  dLy,. 
h=l 

(4) 

2. QUASIDIFFUSION APPROX!~TION 

Equations (2) and (3) can be solved numerically. In the case of a small gap, i.e., 
when h << 7, the solution is made considerably more difficult by the 6-1ike nature of the 
kernel K u. However, precisely the local nature of the kernel indeed permits replacement of 
the problem by a simpler problem that allows analytic solution in a number of cases. 
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Let h << ~. The integral equation can be replaced by differential equations by using 
Taylor series expansions of the unknown function. By analogy with the case of diffuse re- 
flection, we use the notation 

! 
r , ( l )  P < ' ( y ) =  9 ~ , "  (t, s ) h ( k ~  1)~n~+~ (y), 

k=O 

(5) 

where 

1-oa 

"~ao o 

I I ~in ~1: cos ~1' [~ ('1:) c;, , sin ~ r  (~:) d ,  
2a ~ 2a "o 

/1 (t~) = ~ In 1 "7- h"h" -~- ' a ~ 

The constant that is the approximate solution of (3), v ~ = v*(2 -- 0d)/2 can be indi- 
cated and which upon substitution in (3) yields a residual on the order of O(h=/12). 

Here (2) is converted as follows: 

h 2 div (P(l~grad u) = : - - u * .  

The expression (6) can also be obtained from the radiant energy balance equation 

(6) 

h div E = u*. 
If u in (4) is expanded in a Taylor series in the neighborhood of y, 

curacy of the infinitesimals O(h~/l 2) far from the boundary 

(7) 

then to the ac- 

E = - -  hP(  2~ grad u, (8) 

where 

n~ ~) (s) = 

P(?' ( y ) =  pa 2 (p s ) k ( k +  1):17~!~(y); 
k=O 

! cos ~ , {~ (r d~ 

2a~ S sin ~ cos ~ /2  (~) d~b 
{1 

2 ~  

I j' sin, co~, & (,)  d,  1 2~o [; 
1 2 a  

J 

! l n  1 +  
& ( * ) =  2 �9 

Let us note that the differences between corresponding components of the tensors h2p (~) 
and haP (2) are on the order of O(h=/la). The accuracy of results obtained for different 
representations of p(V) (v = I, 2) will be compared below. 

Let us obtain the boundary condition for extraction of the necessary solution of (6). 
It can be deduced from the integral equation (2) if the function is is expanded in a Taylor 
series in the neighborhood of a point lying on the contour L: 

h #u 
pa On - -  ( -  u(yo) @ 2p ~ Q (Yo))(1 q- • (Yo)) + 2u*, (9) 

where 

i h , tf yo 
217 (Yo) 

. O, if Yo 

is a c o n v e x i t y  p o i n t  o f  t h e  c o n t o u r  L,  

is a concavity point of the contour Lo 
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Fig. 2. Dependence of the relative error 
in determining the effective flux on the 
dimensionless magnitude of the gap for 
different values of 0d: i) 0 d = 0.25; 2) 
0.5; 3) 0.75; 4) 0.9; 5) i. The dashed 
and solid curves correspond to the trans- 
fer coefficients P(1) and p(2). 

o o, o5 h/~ 

Therefore, the problem of a quasidiffusion approximation for the case of diffusely 
specular reflection reduces to solving the Poisson equation (6) in the domain S with the 
boundary condition (9) on the contour L. Knowing u and setting v = v ~ we can easily deter- 
mine the effective fluxes on the walls as well as the energy flux E within the domain S by 
means of formula (8). The expression for E n at points on the contour L can be obtained from 
(4) by using the expansion of the unknown function u in a Taylor series 

1 Ou 
E,~ (Y0) = -~jf-~,, .  (yr --hPJ~ ) (Y0) - ~  n~ - Q (y0), (10 )  

w h e r e  P ( ~ ) i k  a r e  c o m p o n e n t s  o f  t h e  t e n s o r  P(V) (9 = 1 ,  2 ) ,  n i a r e  c o m p o n e n t s  o f  t h e  v e c t o r  n ,  
and  s u m m a t i o n  f r o m  1 t o  2 i s  u n d e r s t o o d  t o  b e  o v e r  t h e  r e p e a t e d  s u b s c r i p t s  i ,  k .  

3. PARTICULAR CASE: GAP BETWEEN PARALLEL STRIPS 

Let domain V be the gap between infinite plane strips each of which is bounded by lines 
x = 0 and x = ~ in its plane. Fluxes of density Qa at x = 0 and Q~ at x = ~ are incident on 
the side surface from outside. 

For an infinite strip the differential equations (6) go over into 

du ] =--u* (11) i* d [p~v) ( x ) - ~ x -  
dx L J 

with the boundary conditions 

The solution has the form 

where 

h a.  (o) 
- -  = - - u ( O ) - ~ f p  d Q l q -  2u*, 

pa Ox 
_ /~ a . ( o  

9 ~" ax - u (l) -[- 2,odG§ 2u*. 

u ( x ) -  u ' i  x'dx' c i dx' --+b, 

(12) 

(13) 

u* -i~-6 P~)(x') q- p'lp(v)(l) q-2p'~h(Qf--Q1) 

1 dx' @ 1 1 ~ P ( ~  
h 'o P--'~;ix'--f 7 p~'~(o) (0 

b = c . . . . . . .  ~-- 2 (9 e Q~ + u*). 
9 ~ hP (v) (0) 

^ 

0 �9 . By k n o w i n g  u and  s e t t i n g  v -- v , we c a n  e a s x l y  d e t e r m i n e  t h e  f l u x  q i "  L e t  us  n o t e  t h a t  t h e  
e f f e c t i v e  f l u x  c o n s i s t s  o f  ~ i  and  qS p a r t s  o f  t h e  f l u x  b e i n g  r e f l e c t e d  s p e c u l a r l y  f rom t h e  
i - t h  w a l l .  S i n c e  
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Fig. 3. Dependence of the dimensionless effective flux on pd 
for u* # 0: i) numerical solution of the integral equation; 2, 3) 
analytic solpt~ons~) of(~e differential equation with transfer co- 
efficients P and P respectively. 

Fig. 4. Dependence of the emissivity of the side surface of the 
gap (a dimensionless quantity) on the dimensionless magnitude of 
the gap. Same notation as in Fig. 3. 

q S  ps qd pS f 
d 

P P p- p~ \ 96 1" 
Taking into account the definition of the flux u, the effective fluxes on the walls can be 
expressed in terms of u and q'i, as follows: 

q l =  2 - ~ - - c -  @- --p-y- - - - ] - -  - ~  - -  1. , 

u q (2 ) q (2) + - - - ~  . . . .  -~- --~---1 + - ~ -  3 - - ~ -  . (14) 

For an infinite strip we introduce the quantity 

E~ (o) 
= - - -  or u * =  O, Q~=O. (15) 

01 

4. COMPARISON WITH THE RESULTS OF A NUMERICAL SOLUTION 
OF THE INTEGRAL EQUATION 

For the domain examined in Sec. 3, a numerical solution of the integral equation (2) 
was obtained by the Krylov--Bogolyubov method [5] under the assumption of diffusely specular 
reflection. The error in the solution was estimated by the Runge method and does not exceed 
0.5%. Therefore, the possibility exists for comparing the accuracy with which the analytic 
solutions of the problem of a quasidiffusion approximation (6) and (9) approximate the solu- 
tion of the integral equation (2) for two different representations of the transfer coeffi- 
cient P@) (v = I, 2). 

For u* = 0 the values of the function q(x/l)/Q~ are practically in agreement with the 
analytical solutions (v = 1, 2) in the case of the numerical solution of the integral equa- 
tion. 

Of special interest is a study of the behavior of the error in the analytic solution 
as a function of p d in the absence of intrinsic radiation (u* = 0). As seen from Fig. 2, 
for ~ = 2 the relative error in determining the effective flux decreases monotonically with 

d = d = the growth of P , and is 1.5% for p = i. In the case when ~ i, the dependence is more 
complex in nature. A decrease in the error is observed as p d increases to 0.75. As pd grows 
further, the error starts to grow also, however, without exceeding 1%. 
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For u*# 0, the greatest error is observed at the point x/1 = 0.5. It is shown in Fig. 
3 that p(2) yields a considerably better approximation of the ratio q(0.5)/u* for practical- 
ly all values of pd for u* # 0. 

For the emissivity a of the gap side surface (see Fig. 4), the representation of the 
permeability in" the form P(~) also turns out to be more exact. 

The results presented permit making the deduction that the analytic solution (6) and (9) 
obtained yield an approximate solution of the transfer problem in a narrow gap with accept- 
able accuracy for practice. 

NOTATION 

a(~), distance between the point y and contour L in a direction making the angle ~ + 
with the ox axis; b, c, arbitrary constants; h, distance between the walls of the gap; E, 
two-dimensional component of the spherical radiation vector in the plane of the gap; L, con- 
tour of domain S; l, width of an infinite strip; n, unit normal vector to contour L; Q, QI, 
Q2, radiation flux densities incident from outside; ql, q2, effective flux densities on the 
walls; ~i = qdi + q'i; p(v), transfer coefficient tensor; R(yo), radius of curvature of con- 
tour L at point Yo; S, two-dimensional domain; u = ~ + ~2, v = -~i + ~2; V, gap domain; y, 
point of domain S; c, emissivity of the gap side surface; 0, reflectivity. The super and 
subscripts are: d, diffuse component; s, specular component; and ~, i, representation num- 
bers for the transfer coefficient and the gap walls. 

I, 

2. 

3g 
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